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We report an observation and mechanism of spontaneous periodic modulations of the nematic director close
to the temperature TNA of a nematic-to-smectic-A phase transition if the surface alignment slightly differs from
a pure homeotropic one. Stripe domains appear in the nematic phase about one degree above TNA and persist
into the SmA phase. The instability of the homogeneous state with respect to stripe domains is shown to be
related to a very large bend constant which is much larger than the twist and splay elastic constants. The
instability mechanism consists of reduction of the highly energetic bend deformation, induced by small surface
director tilts, at the expense of a spontaneous periodic splay-twist modulation. Using smallness of the twist-
to-bend and splay-to-bend elastic constant ratios, the critical condition of the instability and the modulation
period are found analytically. Both the experimentally obtained and theoretically predicted domain period
scales very closely to a square root of the cell thickness.
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I. INTRODUCTION

Formation of patterns of the director field under the action
of an external force is an important macroscopic property of
liquid crystalline phases. A fundamental property of liquid
crystals �LCs� that derives from their unique elastic proper-
ties is that in many geometries patterns appear spontane-
ously, i.e., their symmetry is lower than the symmetry of the
force applied to the sample. On the macroscopic level, there
are two essentially different groups of static mechanisms be-
hind a possible spontaneous pattern formation in a nematic
LC: the one related to the divergence elasticity and the one
due to the appreciable elastic anisotropy related to a differ-
ence between the splay, twist, and bend elastic constants �1�.

The divergence elastic mechanisms of a spontaneous pat-
tern formation originates from the fact that the divergence
elastic K24 �saddle-splay� and K13 terms are not positive defi-
nite which reflects the intrinsic ability of the system to gain
energy at the expense of finite deformations. The divergence
elasticity can induce spontaneous patterns both in the pres-
ence of an external torque applied to the director �3,4� and
without any external forces, i.e., just in the homogeneous
ground state �5–8�.

The elastic anisotropy is associated with the positive defi-
nite K11 �splay�, K22 �twist�, and K33 �bend� elastic terms,
which describe the resistance of a nematic system to any
director deformations. Therefore these terms cannot cause a
spontaneous pattern formation from the uniform ground
state, and an external torque must necessarily be present. The
symmetry breaking can occur because the three independent
elastic deformation modes, the splay, twist, and bend, cost
different energy. If an external torque induces one of these
mode while the system can reduce the energy at the expense
of a spontaneously produced less energetic mode, then both
the former mode reduces and the latter appears. As the sec-
ond, the spontaneous mode is more complicated and has the

symmetry lower than that dictated by the external force, this
instability results in a spontaneous symmetry breaking. It is
clear that such an instability strongly depends on how large
the energy difference between different modes is, i.e., how
strong the elastic anisotropy is. A well-known example of
such an effect is the stripe Frederiks transition �9�. A homo-
geneous magnetic field applied to a homogeneous planar
nematic layer can produce a single homogeneous mode, the
splay Frederiks mode homogeneous in the layer plane. How-
ever, if the splay-twist elastic anisotropy is sufficiently
strong, the energy can be reduced by spontaneous twist de-
formations, periodic in the layer plane, and the in-plane ho-
mogeneity turns out to be spontaneously broken. This insta-
bility is possible only if the twist mode is considerably less
energetic than the splay mode, K22 /K11�1 /3 �10–12�, which
can be achieved only in some polymer-related nematic LCs
�for standard nematics K22 /K11�0.5�.

However, as the K24 term and the energy saving twist
term are proportional to sin2 � where � is the director tilt
with respect to the layer normal, both mechanisms described
above are inefficient in a homeotropic geometry where �
=0. Moreover, even for a finite but modest tilt, �2 is still
small and spontaneous formation of static patterns in geom-
etries close to a homeotropic one is highly hindered. This
situation can be changed only if the small �2 is compensated
by very large values of some elastic constants, i.e., by a very
strong elastic anisotropy. The only possibility to have an
anomalously large elastic anisotropy in a nematic LC is to
work with mesogens, that have a SmA phase, close to the
temperature TNA of a nematic–SmA transition. It is known
that in a close vicinity of a SmA phase the twist and bend
elastic constants of a nematic LC become large �formally
speaking, they diverge at TNA�, while the splay constant re-
mains of the standard magnitude �13–15�. This offers an in-
teresting possibility to study spontaneous pattern formation
under the extreme conditions when the elastic ratios b
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=K33 /K11, t=K22 /K11, b / t=K33 /K22, and K24 /K11 are
anomalously large. In the planar geometry or geometry with
the large angle �, spontaneous periodic patterns at TNA had
been observed decades ago �12,16,17� �nowadays the prob-
lem still remains attractive, see, e.g., �6��. At last, recently
observations of spontaneous periodic patterns at TNA had also
been reported in a homeotropic geometry.

The authors of �18� observed a periodic Frederiks transi-
tion from a homeotropic state, induced by a slightly oblique
electric field. More recently, a novel periodic structure,
which spontaneously appears at a nematic–SmA transition in
a field-free geometry close to homeotropic, was reported in
Ref. �19�. Approaching the SmA phase from the nematic
phase, slightly above TNA, periodic domains were observed
in restricted islandlike areas of a homeotropic cell where
their appearance followed a homeotropic-small tilt anchoring
transition. These areas appeared after a surface treatment,
and we could not control their location, size, and even their
very existence; at most, such islands contained 15–20 stripes.
Below TNA both the pretilt and stripes almost immediately
disappeared, and in the SmA phase only a homogeneous ho-
meotropic texture was observed. As it was not clear what
was the role of the finite size and shape of the stripe islands
and the walls separating them from the homogeneous ho-
meotropic surrounding, the nature of this effect remained
unclear. Motivated by this, we attempted to produce homo-
geneous almost homeotropic nematic layers with a small
pretilt and explore a potential pattern formation when the
temperature is in the vicinity of TNA. In this paper we report
results of this study and present theory of the effect ob-
served.

We observed a spontaneous periodic director modulation
in a homogeneous almost homeotropic layer with a small
pretilt. Regular stripes appeared in the nematic phase of a
compound 4-octyloxyphenyl-4’-pentyloxybenzoate close to
TNA, but, surprisingly, they persisted deeply into the SmA
phase. The period L was measured as a function of the layer
thickness H. We also present an analytical theory of the ef-
fect which is exact in the leading order in the small param-
eters 1 /b, t /b, and �2. The spontaneous stripe modulation is
shown to occur due to the high splay-bend and twist-bend
elastic anisotropy. The critical condition for the instability to
occur contains the elastic ratios b and t, the pretilt angles on
the layer’s surfaces, the ratio h of the layer thickness H to the
polar anchoring extrapolation length L11=K11/�polar anchor-
ing W�, and the ratio wa of the azimuthal anchoring to the
polar anchoring W. The modulation period is found to scale
as a square root of the thickness which is in good agreement
with the experiment.

II. EXPERIMENTAL RESULTS

The liquid crystal cell is made up of two flat
glass plates treated with n,n-dimethyl-n-octadecyl-3-amino-
propyltrimethoxysilyl-chloride �DMOAP� to induce homeo-
tropic alignment �20�. After cleaning, the glass plates were
covered with a thin DMOAP film by dipping them in a
stirred dilute solution. Finally, the plates were rinsed with
distilled water and dried at 110 °C for 1 h under a nitrogen

atmosphere. The thickness of the cell was measured either by
focusing at the two glass plates or by using mylar spacers.

The LC compound used in this work is 4-octyloxyphenyl-
4’-pentyloxybenzoate. It exhibits the following transitions:
isotropic→nematic at TNI=85 °C, nematic→SmA at TNA
=66 °C, SmA→SmC at 64 °C, and SmC→crystal at 58 °C.
The cell was enclosed in a hot stage �Instec mK� providing
the temperature stability 0.01 °C. The LC compound was
introduced between the plates by capillarity in the isotropic
phase. The observations were done with a polarized-light
microscope in the transmission mode.

When cooling the sample from the isotropic to nematic
phase, we observed appearing of almost homeotropic do-
mains with a small tilt. The domains are separated by splay-
bend �-walls across which the in-plane director projection
turns by about � and the tilt changes its sign. Recurring the
sample by heating it to the no-tilt state and cooling back to
the tilt state does not change the optical landscape in general,
but does not reproduce the previous domain patterns exactly.
This variation of the tilt direction from one domain to an-
other indicates a degeneracy of the azimuthal easy direction
and thus weak azimuthal anchoring �the surfaces were not
treated as to induce an azimuthal easy direction�. We have
never obtained a uniform homeotropic alignment: the tilt in
different domains is slightly different. The tilt of n, estimated
by the phase retardation technique �21�, varies around the
mean value �6° –10°. It is known that this standard tech-
nique gives the average tilt ��2+�1� /2, where �2 and �1 are
tilt angles at the two layer surfaces, and the hybridity �2
−�1, if any, cannot be detected by this technique �22�.

When the temperature is further lowered toward the
nematic–SmA transition temperature TNA, a transition from
the uniform tilt structure to a stripe state occurs at some Tc
which is slightly above TNA. The small difference Tc−TNA
varies for different cells, but it has not been possible to es-
tablish a certain tendency. The obvious reason is that the
cells’ parameters, and, most importantly, the pretilt which
varies even from domain to domain in the same sample,
cannot be controlled with the accuracy corresponding to the
very subtle difference in Tc−TNA. The stripes always appear
in the entire sample of a surface area �2 cm2.

Figure 1 shows a typical observed striped texture in a
1.8�0.2 �m thick cell which is nearly uniform in the entire

FIG. 1. Stripe texture in a layer of 4-octyloxyphenyl-4’-
pentyloxybenzoate at the temperature slightly above the
nematic–SmA transition in an initially almost homeotropic cell. The
cell thickness H=1.8 �km, the period L=6.6 �m.
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sample. The period L of the stripes is L=6.6�0.2 �m. No
apparent dependence of the stripe period on the temperature
has been detected: once the stripes have appeared their pe-
riod remains unchanged while the stripes exist. The stripes
are sharply defined by a strong optical contrast. We have not
found any twist deformation in the stripe texture. Experimen-
tally, we identify the stripes as domains of a splay-bend tex-
ture with the nematic director periodic in the direction per-
pendicular to the stripes. Finally, we note that the striped
texture persists into the temperature range of the SmA phase
without any apparent period variation until it vanishes at
some temperature below TNA.

Figure 2 gives a plot of the measured period L of the
stripe texture as a function of the cell thickness H. The inset
shows that the experimental data L2�H� fall fairy well onto
the curve L2�H, and thus L��H.

The domains with different tilts are separated by the same
splay-bend walls which separate the domains with different
tilts before the stripe modulation has developed, see Fig. 1.
Along with the fact that the domains include many periods of
the modulation this implies that the domain shape is not
connected to the modulation structure except at the close
proximity of the domain boundary. An important observation
has been that the width �d of these walls remains nearly
constant of the order of a few micrometers for all tempera-
tures. Valuable information about relative strength of the
elasticity and anchoring can be obtained from this result in
the context of the well- known relation W�KH��� /�d�2 /2,
where K is the elastic constant, H is the cell thickness, and
�� is the reorientation angle across the wall �23�. Well above
TNA the elastic constant is known to be K�10−11 N, and
thus the polar anchoring can be estimated as �10−5 J /m2

�20,23� and the extrapolation length K /W�1 �m. At tem-
peratures close to TNA, where neither K nor W is known, one
obtains the relation K /W�2 /H��� /�d�2, which tells us that
the ratio �bend elastic constant�/�polar anchoring� �1 �m
and is temperature independent. Below we will see that this
relation has an important implication in the context of our
theoretical interpretation of the experimental findings.

As the periodic patterns appear in a nematic phase above
TNA, the onset of the modulation can be fully described in

terms of the nematic free energy �FE�. The patterns, how-
ever, do not change much while existing in a short interval of
temperatures below TNA. This shows that the periodically
distorted sample remains in a kind of nematic phase even
somewhat below TNA. Indeed, as shown in Ref. �6�, in a
nematic phase with director deformations the temperature of
the transition to SmA is lower than the standard transition
temperature TNA in a spatially homogeneous state. For suffi-
ciently low temperature, however, the smectic layering sup-
presses the deformation, the periodic modulation disappears,
and the SmA phase occurs.

III. THEORY

A. General formulas and statement of the problem

As the instability occurs in a nematic phase and the do-
main periodicity L, once it has appeared, does not change in
the whole of the temperature range of its existence, our task
is to describe this onset of the instability of the nematic
director. The theory has to answer when the homogeneous
deformation �homogeneous state �HS��, which is induced by
small surface tilts and depends on a single coordinate normal
to the layer, becomes unstable with respect to a periodic
modulation �domain state �DS��.

The total FE F associated with the nematic director n is
the sum of the deformation FE Fd and anchoring FE Fa, i.e.,
F=Fd+Fa. The FE of director deformations has the form

Fd =
K33

2
� dV	1

b
�� · n�2 +

t

b
�n · � � n�2 + �n � � � n�2

− 2�K24/K33� � · �n�� · n� + n � � � n�

+ 2�K13/K33� � · �n�� · n��
 �1�

�the dimensionless constants b and t were introduced above�.
Along with the three positive definite splay, twist, and bend
terms which resist any deformations, Fd contains two sign
indefinite divergence K24 and K13 terms. The elastic theory
predicts that only four constants are independent since �2,24�

K24/K11 =
1

4
�1 + t� . �2�

The anchoring energy consists of the polar anchoring that
gives the energy of the surface director deviation from the
out-of-surface, polar easy direction, and the azimuthal an-
choring that gives the energy of deviation of the in-surface
director component from the in-surface, azimuthal easy di-
rection. In our case the polar easy axis on the upper �“2”� and
lower �“1”� layer surface are almost homeotropic, i.e., tilted

by a small angle �̄2 and �̄1, respectively. For simplicity we

assume �̄2= �̄ and �̄1=0. The azimuthal easy directions on
both surfaces coincide. When the director deviations from
the easy axes are small, the anchoring potentials are well-
represented by the Rapini-Popoular form which will be as-
sumed in our calculations.

Consider a plane nematic layer of thickness H in the ref-
erence frame with the coordinate z which is normal to the
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FIG. 2. Experimental stripe period L vs cell thickness H �sym-
bols�. The solid curve represents theoretical fits which are practi-
cally indistinguishable for all of the curves in Fig. 3. Inset shows
that L2�H��H and thus L�H� is very close to L�H���H.
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layer and has the onset z=0 on its lower surface “1.”
We use the standard director parametrization n
= �sin 	 cos 
 , sin 	 sin 
 , cos 	� by the polar angle 	
counted from the z axis, and the azimuthal angle 
 counted
from the x axis. Variables related to the upper surface z=H
and lower surface z=0 will be indicated by subscripts 2 and
1, respectively. Then the anchoring energy can be repre-
sented as the following surface integral:

Fa =
W

2
� dxdy�sin2 	1 + wp sin2�	2 − �̄�

+ wa1 sin2 	1 sin2 
1 + wa2 sin2 	2 sin2 
2� , �3�

where W is the polar anchoring coefficient on the surface 1,
while that on the surface 2 is wpW; the azimuthal anchoring
coefficients are wa2W	2

2 and wa1W	1
2, the azimuthal easy

direction is along the x axis. The azimuthal anchoring de-
pends on the square sin2 	 of the in-plane projection of the
director: if the director is normal to the surface there is no
in-plane anisotropy, whereas it is maximum when the direc-
tor lies in the plane.

For convenience we now introduce the following dimen-
sionless quantities: the reduced coordinates z /H and y /H for
which we retain the same notations z, 0�z�1, and y; re-
duced thickness h=H /L11 where L11=K11 /W is the anchor-
ing extrapolation length for the lower surface “1”; FE’s F,
FHS, and F2 in units K33 /4H.

In a homeotropic geometry the polar anchoring strength
W is known to rapidly grow in the proximity of a
nematic–SmA transition because of the nascent surface lay-
ering and at TNA can be as large as 10−3 J m−2 �25�. As a
result, the extrapolation length L11, which is of the order of a
micrometer a few degrees above the transition, at TNA can
dramatically decrease to values of order 10−2 �m or smaller.
Therefore the reduced thickness h can be �100 even when
the actual thickness H�1 �m. At the same time, the azi-
muthal anchoring, which is not expected to change apprecia-
bly, will be assumed to be always very weak.

In terms of the parametrizing angles the HS director nHS
is given by 	=��z�, 
=0, i.e.,

nHS�z� = �sin �,0,cos �� . �4�

The function ��z� is a minimizer of the functional

FHS = 2�
0

1

dz�1

b
sin2 � + cos2 ����2

+
2h

b
�wp sin2��2 − �̄� + sin2 �1� , �5�

which is the FE of the HS per unit length in the y direction;
here and below the prime over the variable stands for the z
derivative.

In the DS, n, the director nHS of the HS is weakly per-
turbed, n=nHS+�n. The perturbation �n is periodic along
the y axis and independent of x:

	 = ��z� + f�z�sin��y� ,


 = g�z�cos��y� , �6�

where �=2�H /L is the dimensionless wave number and L is
the period along the y axis. The energy F per unit length
along y of the DS in the leading �quadratic� order in the
small amplitudes f and g is given by the sum

F
n� � FHS
nHS� + F2
nHS,�n� , �7�

where F2 is the second variation in �n of the total energy F
about the HS director nHS. Analysis of the instability of the
HS performed below shows that it requires the elastic aniso-
tropy to satisfy the inequality

1/b � t/b 
 1. �8�

The same conclusion was achieved by the authors of �18�
considering a field-induced instability of a homeotropic state
at TNA. Relation �8� is consistent with the experimental re-
sults on the elastic anisotropy of a compound 8CB at TNA
�26� and was used for theoretical analysis of the periodic
Frederiks transition far from a homeotropic state in �12�. We
also assume that the elastic anisotropy is of the kind de-
scribed by the inequality �8� which will be justified a poste-
riori. Therefore in F2 we omit the terms �1 /b �in particular,
the K13 term�, but, at the same time, terms �t /b and �h /b
might be not negligible since t and h can be large, and we
retain them. Another simplification derives from the small-
ness of � and allows for expanding nHS in � and restricting
F2 to the order O��2�. Then, after the y integration, the func-
tional F2 obtains in the form

F2 = �
0

1

dz� f�2 − 4���f f� + � t

b
�2 − ��2� f2 + �2g�2

+ 2����gf +
2t��2fg�

b
+

�2�2g2

b
� +

2p��

b
��2

2f2g2

− �1
2f1g1� +

h

b
�wpf2

2 + f1
2 + wa2�2

2g2
2 + wa1�1

2g1
2� , �9�

where p� = �K11−2K24� /K11= �1− t� /2 is the total reduced
saddle-splay constant �cf., see Refs. �2,4–6��; the bulk term

of order �2f�2
 f�2 and the anchoring terms ��̄2f2
 f2 are
neglected.

The functional F2 is the FE of periodic modulations. If the
modulation can be such that min F2�0, the HS becomes
unstable, and the modulation with nonzero amplitudes f and
g appears. The critical condition for this instability to occur
is min F2=0. Thus minimization of the functional F2
f ,g� is
now in order. To this end we first find the angle ��z� which
determines the HS.

B. Homogeneous state

Here we minimize the functional FHS �5� to determine the
HS ��z�. Omitting the term 1

bsin2 �
cos2 � in the functional
FHS and the term sin ���2
cos ��� in its Euler-Lagrange
equation, one has

�� = 0. �10�

This equation has the solution
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� = �z + �1, �11�

where � and �1 are integration constants. The boundary con-
ditions to the Euler-Lagrange Eq. �10� have the form

cos2 �2�2� +
wphb

2
sin 2��2 − �̄� = 0,

cos2 �1�1� −
hb

2
sin 2�1 = 0, �12�

where hb=h /b. Making use of Eq. �11� and the smallness of
��s, this system goes over into

� + wphb�� + �1 − �̄� = 0,

� − hb�1 = 0. �13�

The solution of this system is

�2 =
wp�̄�1 + hb�

1 + wp + wphb
,

�1 =
wp�̄

1 + wp + wphb
. �14�

From Eqs. �14� we obtain the quantity � which enters ��z�
�Eq. �11�� and represents hybridity of the HS, i.e.,

� = �2 − �1 =
wphb�̄

1 + wp + wphb
. �15�

C. Minimization of the FE of the domain state

A straightforward minimization of the functional F2 is
highly laborious and does not allow for a clear interpretation
of the intermediate algebra. At the same time, the result can
be obtained on the grounds of following clear and simple
considerations. First, we notice that the coefficient of the
positive bend term f�2 is much larger than all other coeffi-
cients in Eq. �9�, hence the FE is minimized by f indepen-
dent of z: f =const and f�2=0. Second, it is not difficult to see
that the minimum of F2 also favors g independent of z. In-
deed, F2 has three sign indefinite terms which, at least in
principle, can favor the modulation. These are the bulk terms
2����gf and 2�t /b���2fg�, and the surface term with the
coefficient 2�p� /b�� �the terms without � and g have no con-
nection to the y-dependent modulation, their sum is positive
as the HS solution, Eqs. �11� and �14�, is the minimizer of
FHS if the perturbation depends solely on z�. Clearly, by vir-
tue of Eqs. �8� and �2�, the first of these terms is much larger
in its magnitude than the other two, and thus it is this term
2����gf which drives the modulation. On the one hand, this
term is finite for a z-independent g while, on the other hand,
a z-dependence of g would result in a finite �and large� posi-
tive term �2g�2. This implies that the instability is favored by
z independent of g �which is also consistent with the fact that
the twist deformation ��g�� is not observed experimentally�.
Thus F2 is minimized by f and g independent of z. Notice

that under this condition, the term �0
1dz2����gf =���2

2

−�1
2�gf ��, so that a finite hybridity � is necessary for the

instability to occur.
We now introduce a number of auxiliary quantities which

will appear in the forthcoming formulas. These quantities,
which depend on the elastic and anchoring constants, the
surface angles �1 and �2, and hybridity �, are defined as

wa = wa1�1 + wa2�2,

p = 1 – 2p�/b ,

S1 =
�2

3
+ �1�2,

S2 = hb�1 + wp� − �2. �16�

Then, the functional F2 goes over into the following qua-
dratic form of constant f and g:

F2 = Af2 + Bg2 − 2Cfg . �17�

where

A =
t

b
�2 + hb�1 + wp� − �2,

B =
�2

b
��2

3
+ �1�2� + hbwa,

C =
�

2
p���1 + �2� . �18�

The onset of the instability is given by the condition
min F2=0 which is equivalent to the equality AB−C2=0. It
can be reduced to the following form:

��4 + ��2 + � = 0, �19�

where

� =
t

b2S1,

� =
1

b
S1S2 −

p2

4
�2��1 + �2�2 +

t

b
hbwa,

� = hbwaS2. �20�

The quantities �, �, and � depend on b both explicitly and
via the b-dependent S�s, ��s, wa, and hb. Consider the solu-
tion of Eq. �19�,

�2 =
− � � ��2 − 4��

2�
. �21�

It is seen from Eqs. �20� and �16� that ��0 and ��0. Hence
to get �2�0 we need b to satisfy the two conditions: D�b�
=�2−4���0 and ��b��0. The explicit dependence of D�b�
on b is quadratic with the positive coefficient of b2. This
quadratic form has two roots, b− and b+, b−�b+, given by
the formula
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b��b� =
4��S1S2 � �thbwa�2

p2�2��1 + �2�2 . �22�

Then the inequality D�b��0 is satisfied provided there takes
place any of the following two inequalities: b�b− or b
�b+. In turn, the inequality ��b��0 under the necessary
condition ��0 reduces to b�b0 where

b0�b� =
4�S1S2 + thbwa�
p2�2��1 + �2�2 . �23�

Since b−�b0�b+, we have �2�0 when b�b+=b+�bc�.
Thus the critical value of �c=��bc� is obtained �numerically�
from the equation

bc = b+�bc� �24�

�if �→0, then b+ diverges which again shows that the hy-
bridity � must be sufficiently large�. Since this equation im-
plies D�bc�=0, Eq. �21� reduces to �c

2=���bc� /��bc�. Mak-
ing use of the definition �20� of � and �, for the reduced
wave number of the DS one obtains the formula

�c = �hbwaS2b2

tS1
�

b=bc�h�

1/4
, �25�

in which �1�b ,h� and �2�b ,h� are determined solely by the
HS, Eq. �14�. The domain period is calculated as L
=2�H /�c and, when expressed in terms of the actual thick-
ness H, obtains in the form

L = 2��L11H� t��2
2 + �1

2 + �1�2�
3�1 + wp − b�2L11/H��wa1�1 + wa2�2��b=bc�h�

1/4

.

�26�

As �2 and �1 as well as the critical value of b depend on the
reduced thickness h=H /L11, in principle, �c and L depend on
H in a more complicated manner than just that given by the
factor �H. However, the numerical results discussed below
show that actually L��H with a high accuracy.

IV. RESULTS AND DISCUSSION

The physical picture developed above can be described as
follows. As temperature of the sample is approaching a close
proximity of TNA, the elastic constant ratios b and t start to
grow fast and take the values described by the inequality �8�.
The homeotropic-to-tilt surface transition occurs after which
the director tilt is homogeneous in the layer plane. The ho-
mogeneous pretilt is different at the lower and upper surface
so that there is a small hybridity �=�2−�1. On further cool-
ing, the temperature attains some critical value Tc�TNA for
which the ratio bc=b�Tc� and thus the energy price for the
hybridity is so large that the system becomes unstable with
respect to a periodic modulation. This modulation saves the
energy by decreasing the bend deformation at the expense of
producing the DS with periodic splay and twist deforma-
tions. The period L of the DS remains equal to its value at bc
with which the domains first appear at Tc, as after that their
size is frustrated by the boundary conditions at the sample’s
periphery.

Mathematically, the energy decrease in the DS is de-
scribed by the FE density 2����gf which drives the instabil-
ity. For z independent perturbations f and g, which favor the
DS, this term is a total derivative and, after the bulk integra-
tion, goes over into ���2

2−�1
2�gf . This shows that a finite

hybridity � is a necessary precondition for the instability.
The critical value bc is found from the equation bc=b+�bc�
�24� which contains the normalized reduced thickness hb
= �H /L11� /b, the elastic ratio t, and the polar and azimuthal
anchoring coefficients wp, wa1, and wa2 as parameters, hence

bc=bc�H /L11, �̄ , t ,wp ,wa1,2�. When bc is found for fixed val-
ues of these parameters, the period L�H� can be calculated
from formulas �26� and �14�.

Dependence of the critical elastic ratio bc on the other
parameters was obtained by solving the irrational algebraic
equation bc=b+�bc� numerically, Fig. 3. The values of the
parameters L11, t, wp, and w̄a=wa1=wa2 were chosen as to
provide the fit to the experimental data and, at the same time,

to keep �̄ and bc at possibly low values. All of the curves in
Fig. 3 give equally good and practically indistinguishable fits
to the experimental data, Fig. 2, if the extrapolation length
L11 is chosen as indicated in the caption to Fig. 3. These
values of L11�0.005–0.015 which is in accord with the val-
ues of a polar anchoring W generally expected at a
nematic–SmA transition �25� �see discussion above Eq. �4��.
The clear trend is that a smaller �̄ requires a larger bc. The
curves in Fig. 3 demonstrate how large bc should be if the tilt

is induced by the easy direction �̄=0.3 and 0.2: for these tilts
the DS appears for the bend elastic ratio bc of the order of
hundreds. One can see that the critical value of bc correlates
with the temperature-dependent anchoring extrapolation
length L11: a higher bc is accompanied by a smaller L11 so
that bcL11=K33 /W always remains close to 1 �m which is
the extrapolation length K11 /W well above TNA. Thus the
ratio K33�T� /W�T��1 �m is nearly independent of tem-
perature which is in a qualitative accord with our experimen-
tal findings. This is a natural result as the increase of anchor-
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FIG. 3. Critical values of the bend elastic ratio bc vs layer thick-
ness H, calculated from Eq. �24� for wp=1.2, w̄a=wa1=wa2, and the

following parameters. Curve 1a: �̄=0.3, t=6, L11=0.015 �m, and

w̄a=5·10−4; curve 1b: �̄=0.3, t=10, L11=0.012 �m, and w̄a

=5·10−4; curve 1c: �̄=0.3, t=20, L11=0.009 �m, and w̄a=5·10−4;

curve 2a: �̄=0.2, t=6, L11=0.007 �m, and w̄a=10−4; and curve 2b:

�̄=0.2, t=20, L11=0.005 �m, and w̄a=2·10−4.
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ing in a SmA is actually an elastic phenomenon and
expresses the fact that a surface tilt costs a high bend and
twist elastic energy �25�. At the same time, the twist elastic
ratio t is found to be considerably lower than b, i.e., in the
range of tens: for a larger t the fit becomes poor. For a more
quantitative discussion one needs experimental data on the
behavior of the anchoring and bend and twist elastic ratios
slightly above a nematic–SmA transition, which, however,
are both scant and nonconclusive �see discussion in �13,14��.
The only known experimental temperature dependence of
anchoring at TNA �25�, W�WNA+0.09�1−T /TNA�0.65�0.09

with WNA�10−3 J /m2, is measured in the SmA phase, i.e.,
below TNA. At the same time, the experimental data on 8CB
obtained in �26� and parametrized in �12� as b��T /TNA
−1�−0.7 and t��T /TNA−1�−0.35, show that t scales as b1/2,
which is in a qualitative agreement with the results obtained
from our fit. The fact that the reciprocal to the exponent of
W�T� is close to that of b�T� might be indicative of the rea-
son why the ratio K33�T� /W�T� is almost temperature inde-
pendent. This both supports our result and throws additional
light on the problem of anchoring and elastic bend and twist
moduli in a SmA.

The azimuthal anchoring w̄aW, which provides the fit, is
very small, w̄a�10−4−10−3. In other situations such a small
azimuthal anchoring could have been merely set to zero, but
at a nematic–SmA transition with its specific interplay of the
large and small numbers, this small but nonzero value is
essential as w̄a=0 results in L=�. The inset in Fig. 2 shows
that the thickness dependence of the DS period is practically
L�H���H which is in accord with the experimental data.

The mechanism of the instability of the HS with respect to

the DS requires a finite hybridity � �in our case ���̄�. We
believe that a similar mechanism is responsible for the peri-
odic patterns observed in �18�. These patterns were induced
by an electric field in a homeotropic geometry slightly above
the nematic–SmA transition temperature of 8CB �the dielec-
tric anisotropy is positive�. The transition to the periodic

state, described by the authors of �18�, has a threshold. At the
same time, as mentioned in �18�, the electric field driving the
transition is produced by two electrodes, placed on just one
sample’s surface, and thus is neither exactly parallel to the
nematic layer nor symmetric with respect to its midplane.
Such a field gives rise to a hybrid director alignment before
the periodic instability. Indeed, it induces a thresholdless ho-
mogeneous �i.e., solely z-dependent� director tilt different at
both surfaces. This hybridity of the homogeneous director
distortions, which is gradually growing when the field
strength is increasing from zero, precedes the transition to
the periodic state which occurs at some threshold field. We
see that the transition to DS observed in �18� starts from the
homogeneous state with a finite hybridity, and the situation
seems to be essentially similar to the one responsible for the
periodic modulation in our field free case.

The general formula for the FE of the perturbation in the
vicinity of a homeotropic state and, in particular, our Eq. �9�,
shows that a pure homeotropic state is stable with respect to
any continuous instabilities �second order transitions� as the
second order energy variation vanishes for �=0. Here we
have found that the situation does not change for a �small�
pretilt if the surface tilts are equal: a final hybridity is nec-
essary for an instability to occur in geometries close to the
homeotropic one. This shows that the developed hybridity-
related mechanism is quite general for instabilities of a
nearly homeotropic state of the nematic director.
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